calloop/sources/futures.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
//! A futures executor as an event source
//!
//! Only available with the `executor` cargo feature of `calloop`.
//!
//! This executor is intended for light futures, which will be polled as part of your
//! event loop. Such futures may be waiting for IO, or for some external computation on an
//! other thread for example.
//!
//! You can create a new executor using the `executor` function, which creates a pair
//! `(Executor<T>, Scheduler<T>)` to handle futures that all evaluate to type `T`. The
//! executor should be inserted into your event loop, and will yield the return values of
//! the futures as they finish into your callback. The scheduler can be cloned and used
//! to send futures to be executed into the executor. A generic executor can be obtained
//! by choosing `T = ()` and letting futures handle the forwarding of their return values
//! (if any) by their own means.
//!
//! **Note:** The futures must have their own means of being woken up, as this executor is,
//! by itself, not I/O aware. See [`LoopHandle::adapt_io`](crate::LoopHandle#method.adapt_io)
//! for that, or you can use some other mechanism if you prefer.
use async_task::{Builder, Runnable};
use slab::Slab;
use std::{
cell::RefCell,
fmt,
future::Future,
rc::Rc,
sync::{
atomic::{AtomicBool, Ordering},
mpsc, Arc, Mutex,
},
task::Waker,
};
use crate::{
sources::{
channel::ChannelError,
ping::{make_ping, Ping, PingError, PingSource},
EventSource,
},
Poll, PostAction, Readiness, Token, TokenFactory,
};
/// A future executor as an event source
#[derive(Debug)]
pub struct Executor<T> {
/// Shared state between the executor and the scheduler.
state: Rc<State<T>>,
/// Notifies us when the executor is woken up.
source: PingSource,
/// Used for when we need to wake ourselves up.
ping: Ping,
}
/// A scheduler to send futures to an executor
#[derive(Clone, Debug)]
pub struct Scheduler<T> {
/// Shared state between the executor and the scheduler.
state: Rc<State<T>>,
}
/// The inner state of the executor.
#[derive(Debug)]
struct State<T> {
/// The incoming queue of runnables to be executed.
incoming: mpsc::Receiver<Runnable<usize>>,
/// The sender corresponding to `incoming`.
sender: Arc<Sender>,
/// The list of currently active tasks.
///
/// This is set to `None` when the executor is destroyed.
active_tasks: RefCell<Option<Slab<Active<T>>>>,
}
/// Send a future to an executor.
///
/// This needs to be thread-safe, as it is called from a `Waker` that may be on a different thread.
#[derive(Debug)]
struct Sender {
/// The sender used to send runnables to the executor.
///
/// `mpsc::Sender` is `!Sync`, wrapping it in a `Mutex` makes it `Sync`.
sender: Mutex<mpsc::Sender<Runnable<usize>>>,
/// The ping source used to wake up the executor.
wake_up: Ping,
/// Whether the executor has already been woken.
notified: AtomicBool,
}
/// An active future or its result.
#[derive(Debug)]
enum Active<T> {
/// The future is currently being polled.
///
/// Waking this waker will insert the runnable into `incoming`.
Future(Waker),
/// The future has finished polling, and its result is stored here.
Finished(T),
}
impl<T> Active<T> {
fn is_finished(&self) -> bool {
matches!(self, Active::Finished(_))
}
}
impl<T> Scheduler<T> {
/// Sends the given future to the executor associated to this scheduler
///
/// Returns an error if the the executor not longer exists.
pub fn schedule<Fut>(&self, future: Fut) -> Result<(), ExecutorDestroyed>
where
Fut: Future<Output = T> + 'static,
T: 'static,
{
/// Store this future's result in the executor.
struct StoreOnDrop<'a, T> {
index: usize,
value: Option<T>,
state: &'a State<T>,
}
impl<T> Drop for StoreOnDrop<'_, T> {
fn drop(&mut self) {
let mut active_tasks = self.state.active_tasks.borrow_mut();
if let Some(active_tasks) = active_tasks.as_mut() {
if let Some(value) = self.value.take() {
active_tasks[self.index] = Active::Finished(value);
} else {
// The future was dropped before it finished.
// Remove it from the active list.
active_tasks.remove(self.index);
}
}
}
}
fn assert_send_and_sync<T: Send + Sync>(_: &T) {}
let mut active_guard = self.state.active_tasks.borrow_mut();
let active_tasks = active_guard.as_mut().ok_or(ExecutorDestroyed)?;
// Wrap the future in another future that polls it and stores the result.
let index = active_tasks.vacant_key();
let future = {
let state = self.state.clone();
async move {
let mut guard = StoreOnDrop {
index,
value: None,
state: &state,
};
// Get the value of the future.
let value = future.await;
// Store it in the executor.
guard.value = Some(value);
}
};
// A schedule function that inserts the runnable into the incoming queue.
let schedule = {
let sender = self.state.sender.clone();
move |runnable| sender.send(runnable)
};
assert_send_and_sync(&schedule);
// Spawn the future.
let (runnable, task) = Builder::new()
.metadata(index)
.spawn_local(move |_| future, schedule);
// Insert the runnable into the set of active tasks.
active_tasks.insert(Active::Future(runnable.waker()));
drop(active_guard);
// Schedule the runnable and detach the task so it isn't cancellable.
runnable.schedule();
task.detach();
Ok(())
}
}
impl Sender {
/// Send a runnable to the executor.
fn send(&self, runnable: Runnable<usize>) {
// Send on the channel.
//
// All we do with the lock is call `send`, so there's no chance of any state being corrupted on
// panic. Therefore it's safe to ignore the mutex poison.
if let Err(e) = self
.sender
.lock()
.unwrap_or_else(|e| e.into_inner())
.send(runnable)
{
// The runnable must be dropped on its origin thread, since the original future might be
// !Send. This channel immediately sends it back to the Executor, which is pinned to the
// origin thread. The executor's Drop implementation will force all of the runnables to be
// dropped, therefore the channel should always be available. If we can't send the runnable,
// it indicates that the above behavior is broken and that unsoundness has occurred. The
// only option at this stage is to forget the runnable and leak the future.
std::mem::forget(e);
unreachable!("Attempted to send runnable to a stopped executor");
}
// If the executor is already awake, don't bother waking it up again.
if self.notified.swap(true, Ordering::SeqCst) {
return;
}
// Wake the executor.
self.wake_up.ping();
}
}
impl<T> Drop for Executor<T> {
fn drop(&mut self) {
let active_tasks = self.state.active_tasks.borrow_mut().take().unwrap();
// Wake all of the active tasks in order to destroy their runnables.
for (_, task) in active_tasks {
if let Active::Future(waker) = task {
// Don't let a panicking waker blow everything up.
//
// There is a chance that a future will panic and, during the unwinding process,
// drop this executor. However, since the future panicked, there is a possibility
// that the internal state of the waker will be invalid in such a way that the waker
// panics as well. Since this would be a panic during a panic, Rust will upgrade it
// into an abort.
//
// In the interest of not aborting without a good reason, we just drop the panic here.
std::panic::catch_unwind(|| waker.wake()).ok();
}
}
// Drain the queue in order to drop all of the runnables.
while self.state.incoming.try_recv().is_ok() {}
}
}
/// Error generated when trying to schedule a future after the
/// executor was destroyed.
#[derive(Debug)]
pub struct ExecutorDestroyed;
impl fmt::Display for ExecutorDestroyed {
#[cfg_attr(feature = "nightly_coverage", coverage(off))]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("the executor was destroyed")
}
}
impl std::error::Error for ExecutorDestroyed {}
/// Create a new executor, and its associated scheduler
///
/// May fail due to OS errors preventing calloop to setup its internal pipes (if your
/// process has reatched its file descriptor limit for example).
pub fn executor<T>() -> crate::Result<(Executor<T>, Scheduler<T>)> {
let (sender, incoming) = mpsc::channel();
let (wake_up, ping) = make_ping()?;
let state = Rc::new(State {
incoming,
active_tasks: RefCell::new(Some(Slab::new())),
sender: Arc::new(Sender {
sender: Mutex::new(sender),
wake_up: wake_up.clone(),
notified: AtomicBool::new(false),
}),
});
Ok((
Executor {
state: state.clone(),
source: ping,
ping: wake_up,
},
Scheduler { state },
))
}
impl<T> EventSource for Executor<T> {
type Event = T;
type Metadata = ();
type Ret = ();
type Error = ExecutorError;
fn process_events<F>(
&mut self,
readiness: Readiness,
token: Token,
mut callback: F,
) -> Result<PostAction, Self::Error>
where
F: FnMut(T, &mut ()),
{
let state = &self.state;
// Set to the unnotified state.
state.sender.notified.store(false, Ordering::SeqCst);
let (clear_readiness, action) = {
let mut clear_readiness = false;
let action = self
.source
.process_events(readiness, token, |(), &mut ()| {
// Process runnables, but not too many at a time; better to move onto the next event quickly!
for _ in 0..1024 {
let runnable = match state.incoming.try_recv() {
Ok(runnable) => runnable,
Err(_) => {
// Make sure to clear the readiness if there are no more runnables.
clear_readiness = true;
break;
}
};
// Run the runnable.
let index = *runnable.metadata();
runnable.run();
// If the runnable finished with a result, call the callback.
let mut active_guard = state.active_tasks.borrow_mut();
let active_tasks = active_guard.as_mut().unwrap();
if let Some(state) = active_tasks.get(index) {
if state.is_finished() {
// Take out the state and provide it to the caller.
let result = match active_tasks.remove(index) {
Active::Finished(result) => result,
_ => unreachable!(),
};
// Drop the guard since the callback may register another future to the scheduler.
drop(active_guard);
callback(result, &mut ());
}
}
}
})
.map_err(ExecutorError::WakeError)?;
(clear_readiness, action)
};
// Re-ready the ping source if we need to re-run this handler.
if !clear_readiness {
self.ping.ping();
Ok(PostAction::Continue)
} else {
Ok(action)
}
}
fn register(&mut self, poll: &mut Poll, token_factory: &mut TokenFactory) -> crate::Result<()> {
self.source.register(poll, token_factory)?;
Ok(())
}
fn reregister(
&mut self,
poll: &mut Poll,
token_factory: &mut TokenFactory,
) -> crate::Result<()> {
self.source.reregister(poll, token_factory)?;
Ok(())
}
fn unregister(&mut self, poll: &mut Poll) -> crate::Result<()> {
self.source.unregister(poll)?;
Ok(())
}
}
/// An error arising from processing events in an async executor event source.
#[derive(Debug)]
pub enum ExecutorError {
/// Error while reading new futures added via [`Scheduler::schedule()`].
NewFutureError(ChannelError),
/// Error while processing wake events from existing futures.
WakeError(PingError),
}
impl fmt::Display for ExecutorError {
#[cfg_attr(feature = "nightly_coverage", coverage(off))]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::NewFutureError(err) => write!(f, "error adding new futures: {}", err),
Self::WakeError(err) => write!(f, "error processing wake events: {}", err),
}
}
}
impl std::error::Error for ExecutorError {}
#[cfg(test)]
mod tests {
use super::*;
use std::cell::RefCell;
use std::rc::Rc;
#[test]
fn ready() {
let mut event_loop = crate::EventLoop::<u32>::try_new().unwrap();
let handle = event_loop.handle();
let (exec, sched) = executor::<u32>().unwrap();
handle
.insert_source(exec, move |ret, &mut (), got| {
*got = ret;
})
.unwrap();
let mut got = 0;
let fut = async { 42 };
event_loop
.dispatch(Some(::std::time::Duration::ZERO), &mut got)
.unwrap();
// the future is not yet inserted, and thus has not yet run
assert_eq!(got, 0);
sched.schedule(fut).unwrap();
event_loop
.dispatch(Some(::std::time::Duration::ZERO), &mut got)
.unwrap();
// the future has run
assert_eq!(got, 42);
}
#[test]
fn more_than_1024() {
let mut event_loop = crate::EventLoop::<()>::try_new().unwrap();
let handle = event_loop.handle();
let (exec, sched) = executor::<()>().unwrap();
handle.insert_source(exec, move |_, _, _| ()).unwrap();
let counter = Rc::new(RefCell::new(0));
for _ in 0..1025 {
let counter = counter.clone();
sched
.schedule(async move {
*counter.borrow_mut() += 1;
})
.unwrap();
}
event_loop
.dispatch(Some(::std::time::Duration::ZERO), &mut ())
.unwrap();
assert_eq!(*counter.borrow(), 1024);
event_loop
.dispatch(Some(::std::time::Duration::ZERO), &mut ())
.unwrap();
assert_eq!(*counter.borrow(), 1025);
}
}