x11rb/rust_connection/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
//! A pure-rust implementation of a connection to an X11 server.
use std::io::IoSlice;
use std::sync::{Condvar, Mutex, MutexGuard, TryLockError};
use std::time::Instant;
use crate::connection::{
compute_length_field, Connection, ReplyOrError, RequestConnection, RequestKind,
};
use crate::cookie::{Cookie, CookieWithFds, VoidCookie};
use crate::errors::DisplayParsingError;
pub use crate::errors::{ConnectError, ConnectionError, ParseError, ReplyError, ReplyOrIdError};
use crate::extension_manager::ExtensionManager;
use crate::protocol::bigreq::{ConnectionExt as _, EnableReply};
use crate::protocol::xproto::{Setup, GET_INPUT_FOCUS_REQUEST, QUERY_EXTENSION_REQUEST};
use crate::utils::RawFdContainer;
use crate::x11_utils::{ExtensionInformation, TryParse, TryParseFd};
use x11rb_protocol::connect::Connect;
use x11rb_protocol::connection::{Connection as ProtoConnection, PollReply, ReplyFdKind};
use x11rb_protocol::id_allocator::IdAllocator;
use x11rb_protocol::{xauth::get_auth, DiscardMode, RawEventAndSeqNumber, SequenceNumber};
mod packet_reader;
mod stream;
mod write_buffer;
use packet_reader::PacketReader;
pub use stream::{DefaultStream, PollMode, Stream};
use write_buffer::WriteBuffer;
type Buffer = <RustConnection as RequestConnection>::Buf;
/// A combination of a buffer and a list of file descriptors for use by [`RustConnection`].
pub type BufWithFds = crate::connection::BufWithFds<Buffer>;
#[derive(Debug)]
enum MaxRequestBytes {
Unknown,
Requested(Option<SequenceNumber>),
Known(usize),
}
#[derive(Debug)]
struct ConnectionInner {
inner: ProtoConnection,
write_buffer: WriteBuffer,
}
type MutexGuardInner<'a> = MutexGuard<'a, ConnectionInner>;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum BlockingMode {
Blocking,
NonBlocking,
}
/// A connection to an X11 server implemented in pure rust
///
/// This type is generic over `S`, which allows to use a generic stream to communicate with the
/// server. This stream can written to and read from, but it can also be polled, meaning that one
/// checks if new data can be read or written.
///
/// `RustConnection` always used an internal buffer for reading, so `R` does not need
/// to be buffered.
#[derive(Debug)]
pub struct RustConnection<S: Stream = DefaultStream> {
inner: Mutex<ConnectionInner>,
stream: S,
// This mutex is only locked with `try_lock` (never blocks), so a simpler
// lock based only on a atomic variable would be more efficient.
packet_reader: Mutex<PacketReader>,
reader_condition: Condvar,
setup: Setup,
extension_manager: Mutex<ExtensionManager>,
maximum_request_bytes: Mutex<MaxRequestBytes>,
id_allocator: Mutex<IdAllocator>,
}
// Locking rules
// =============
//
// To avoid deadlocks, it is important to have a defined ordering about mutexes:
//
// Mutexes that may be locked when no other mutex is held:
// - maximum_request_bytes
// - extension_manager
// - id_allocator
//
// Then comes `inner`. This mutex protects the information about in-flight requests and packets
// that were already read from the connection but not given out to callers. This mutex also
// contains the write buffer and has to be locked in order to write something to the X11 server.
// In this case, the mutex has to be kept locked until writing the request has finished. This is
// necessary to ensure correct sync insertion without threads interfering with each other. When
// this mutex is locked for operations other than writing, the lock should be kept only for a
// short time.
//
// The inner level is `packet_reader`. This mutex is only locked when `inner` is already held and
// only with `try_lock()`. This ensures that there is only one reader. While actually reading, the
// lock on `inner` is released so that other threads can make progress. If more threads want to
// read while `read` is already locked, they sleep on `reader_condition`. The actual reader will
// then notify this condition variable once it is done reading.
//
// n.b. notgull: write_buffer follows the same rules
//
// The condition variable is necessary since one thread may read packets that another thread waits
// for. Thus, after reading something from the connection, all threads that wait for something have
// to check if they are the intended recipient.
impl RustConnection<DefaultStream> {
/// Establish a new connection.
///
/// If no `dpy_name` is provided, the value from `$DISPLAY` is used.
pub fn connect(dpy_name: Option<&str>) -> Result<(Self, usize), ConnectError> {
// Parse display information
let parsed_display = x11rb_protocol::parse_display::parse_display(dpy_name)?;
let screen = parsed_display.screen.into();
// Establish connection by iterating over ConnectAddresses until we find one that
// works.
let mut error = None;
for addr in parsed_display.connect_instruction() {
let start = Instant::now();
match DefaultStream::connect(&addr) {
Ok((stream, (family, address))) => {
crate::trace!(
"Connected to X11 server via {:?} in {:?}",
addr,
start.elapsed()
);
// we found a stream, get auth information
let (auth_name, auth_data) = get_auth(family, &address, parsed_display.display)
// Ignore all errors while determining auth; instead we just try without auth info.
.unwrap_or(None)
.unwrap_or_else(|| (Vec::new(), Vec::new()));
crate::trace!("Picked authentication via auth mechanism {:?}", auth_name);
// finish connecting to server
return Ok((
Self::connect_to_stream_with_auth_info(
stream, screen, auth_name, auth_data,
)?,
screen,
));
}
Err(e) => {
crate::debug!("Failed to connect to X11 server via {:?}: {:?}", addr, e);
error = Some(e);
continue;
}
}
}
// none of the addresses worked
Err(match error {
Some(e) => ConnectError::IoError(e),
None => DisplayParsingError::Unknown.into(),
})
}
}
impl<S: Stream> RustConnection<S> {
/// Establish a new connection to the given streams.
///
/// `read` is used for reading data from the X11 server and `write` is used for writing.
/// `screen` is the number of the screen that should be used. This function checks that a
/// screen with that number exists.
pub fn connect_to_stream(stream: S, screen: usize) -> Result<Self, ConnectError> {
Self::connect_to_stream_with_auth_info(stream, screen, Vec::new(), Vec::new())
}
/// Establish a new connection to the given streams.
///
/// `read` is used for reading data from the X11 server and `write` is used for writing.
/// `screen` is the number of the screen that should be used. This function checks that a
/// screen with that number exists.
///
/// The parameters `auth_name` and `auth_data` are used for the members
/// `authorization_protocol_name` and `authorization_protocol_data` of the `SetupRequest` that
/// is sent to the X11 server.
pub fn connect_to_stream_with_auth_info(
stream: S,
screen: usize,
auth_name: Vec<u8>,
auth_data: Vec<u8>,
) -> Result<Self, ConnectError> {
let (mut connect, setup_request) = Connect::with_authorization(auth_name, auth_data);
// write the connect() setup request
let mut nwritten = 0;
let mut fds = vec![];
crate::trace!(
"Writing connection setup with {} bytes",
setup_request.len()
);
while nwritten != setup_request.len() {
stream.poll(PollMode::Writable)?;
// poll returned successfully, so the stream is writable.
match stream.write(&setup_request[nwritten..], &mut fds) {
Ok(0) => {
return Err(std::io::Error::new(
std::io::ErrorKind::WriteZero,
"failed to write whole buffer",
)
.into())
}
Ok(n) => nwritten += n,
// Spurious wakeup from poll, try again
Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {}
Err(e) => return Err(e.into()),
}
}
// read in the setup
loop {
stream.poll(PollMode::Readable)?;
crate::trace!(
"Reading connection setup with at least {} bytes remaining",
connect.buffer().len()
);
let adv = match stream.read(connect.buffer(), &mut fds) {
Ok(0) => {
return Err(std::io::Error::new(
std::io::ErrorKind::UnexpectedEof,
"failed to read whole buffer",
)
.into())
}
Ok(n) => n,
// Spurious wakeup from poll, try again
Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => continue,
Err(e) => return Err(e.into()),
};
crate::trace!("Read {} bytes", adv);
// advance the internal buffer
if connect.advance(adv) {
break;
}
}
// resolve the setup
let setup = connect.into_setup()?;
// Check that we got a valid screen number
if screen >= setup.roots.len() {
return Err(ConnectError::InvalidScreen);
}
// Success! Set up our state
Self::for_connected_stream(stream, setup)
}
/// Establish a new connection for an already connected stream.
///
/// The given `stream` is used for communicating with the X11 server.
/// It is assumed that `setup` was just received from the server. Thus, the first reply to a
/// request that is sent will have sequence number one.
pub fn for_connected_stream(stream: S, setup: Setup) -> Result<Self, ConnectError> {
let id_allocator = IdAllocator::new(setup.resource_id_base, setup.resource_id_mask)?;
Ok(RustConnection {
inner: Mutex::new(ConnectionInner {
inner: ProtoConnection::new(),
write_buffer: WriteBuffer::new(),
}),
stream,
packet_reader: Mutex::new(PacketReader::new()),
reader_condition: Condvar::new(),
setup,
extension_manager: Default::default(),
maximum_request_bytes: Mutex::new(MaxRequestBytes::Unknown),
id_allocator: Mutex::new(id_allocator),
})
}
/// Internal function for actually sending a request.
///
/// This function "does the actual work" for `send_request_with_reply()` and
/// `send_request_without_reply()`.
fn send_request(
&self,
bufs: &[IoSlice<'_>],
fds: Vec<RawFdContainer>,
kind: ReplyFdKind,
) -> Result<SequenceNumber, ConnectionError> {
let _guard = crate::debug_span!("send_request").entered();
let request_info = RequestInfo {
extension_manager: &self.extension_manager,
major_opcode: bufs[0][0],
minor_opcode: bufs[0][1],
};
crate::debug!("Sending {}", request_info);
let mut storage = Default::default();
let bufs = compute_length_field(self, bufs, &mut storage)?;
// Note: `inner` must be kept blocked until the request has been completely written
// or buffered to avoid sending the data of different requests interleaved. For this
// reason, `read_packet_and_enqueue` must always be called with `BlockingMode::NonBlocking`
// during a write, otherwise `inner` would be temporarily released.
let mut inner = self.inner.lock().unwrap();
loop {
let send_result = inner.inner.send_request(kind);
match send_result {
Some(seqno) => {
// Now actually send the buffers
let _inner = self.write_all_vectored(inner, bufs, fds)?;
return Ok(seqno);
}
None => {
crate::trace!("Syncing with the X11 server since there are too many outstanding void requests");
inner = self.send_sync(inner)?;
}
}
}
}
/// Send a synchronisation packet to the X11 server.
///
/// This function sends a `GetInputFocus` request to the X11 server and arranges for its reply
/// to be ignored. This ensures that a reply is expected (`ConnectionInner.next_reply_expected`
/// increases).
fn send_sync<'a>(
&'a self,
mut inner: MutexGuardInner<'a>,
) -> Result<MutexGuardInner<'a>, std::io::Error> {
let length = 1u16.to_ne_bytes();
let request = [
GET_INPUT_FOCUS_REQUEST,
0, /* pad */
length[0],
length[1],
];
let seqno = inner
.inner
.send_request(ReplyFdKind::ReplyWithoutFDs)
.expect("Sending a HasResponse request should not be blocked by syncs");
inner
.inner
.discard_reply(seqno, DiscardMode::DiscardReplyAndError);
let inner = self.write_all_vectored(inner, &[IoSlice::new(&request)], Vec::new())?;
Ok(inner)
}
/// Write a set of buffers on a `writer`. May also read packets
/// from the server.
fn write_all_vectored<'a>(
&'a self,
mut inner: MutexGuardInner<'a>,
mut bufs: &[IoSlice<'_>],
mut fds: Vec<RawFdContainer>,
) -> std::io::Result<MutexGuardInner<'a>> {
let mut partial_buf: &[u8] = &[];
while !partial_buf.is_empty() || !bufs.is_empty() {
self.stream.poll(PollMode::ReadAndWritable)?;
let write_result = if !partial_buf.is_empty() {
// "inner" is held, passed into this function, so this should never be held
inner
.write_buffer
.write(&self.stream, partial_buf, &mut fds)
} else {
// same as above
inner
.write_buffer
.write_vectored(&self.stream, bufs, &mut fds)
};
match write_result {
Ok(0) => {
return Err(std::io::Error::new(
std::io::ErrorKind::WriteZero,
"failed to write anything",
));
}
Ok(mut count) => {
// Successful write
if count >= partial_buf.len() {
count -= partial_buf.len();
partial_buf = &[];
} else {
partial_buf = &partial_buf[count..];
count = 0;
}
while count > 0 {
if count >= bufs[0].len() {
count -= bufs[0].len();
} else {
partial_buf = &bufs[0][count..];
count = 0;
}
bufs = &bufs[1..];
// Skip empty slices
while bufs.first().map(|s| s.len()) == Some(0) {
bufs = &bufs[1..];
}
}
}
Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {
crate::trace!("Writing more data would block for now");
// Writing would block, try to read instead because the
// server might not accept new requests after its
// buffered replies have been read.
inner = self.read_packet_and_enqueue(inner, BlockingMode::NonBlocking)?;
}
Err(e) => return Err(e),
}
}
if !fds.is_empty() {
return Err(std::io::Error::new(
std::io::ErrorKind::Other,
"Left over FDs after sending the request",
));
}
Ok(inner)
}
fn flush_impl<'a>(
&'a self,
mut inner: MutexGuardInner<'a>,
) -> std::io::Result<MutexGuardInner<'a>> {
// n.b. notgull: inner guard is held
while inner.write_buffer.needs_flush() {
self.stream.poll(PollMode::ReadAndWritable)?;
let flush_result = inner.write_buffer.flush(&self.stream);
match flush_result {
// Flush completed
Ok(()) => break,
Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {
crate::trace!("Flushing more data would block for now");
// Writing would block, try to read instead because the
// server might not accept new requests after its
// buffered replies have been read.
inner = self.read_packet_and_enqueue(inner, BlockingMode::NonBlocking)?;
}
Err(e) => return Err(e),
}
}
Ok(inner)
}
/// Read a packet from the connection.
///
/// This function waits for an X11 packet to be received. It drops the mutex protecting the
/// inner data while waiting for a packet so that other threads can make progress. For this
/// reason, you need to pass in a `MutexGuard` to be dropped. This function locks the mutex
/// again and returns a new `MutexGuard`.
///
/// Note: If `mode` is `BlockingMode::Blocking`, the lock on `inner` will be temporarily
/// released. While sending a request, `inner` must be kept locked to avoid sending the data
/// of different requests interleaved. So, when `read_packet_and_enqueue` is called as part
/// of a write, it must always be done with `mode` set to `BlockingMode::NonBlocking`.
fn read_packet_and_enqueue<'a>(
&'a self,
mut inner: MutexGuardInner<'a>,
mode: BlockingMode,
) -> Result<MutexGuardInner<'a>, std::io::Error> {
// 0.1. Try to lock the `packet_reader` mutex.
match self.packet_reader.try_lock() {
Err(TryLockError::WouldBlock) => {
// In non-blocking mode, we just return immediately
match mode {
BlockingMode::NonBlocking => {
crate::trace!("read_packet_and_enqueue in NonBlocking mode doing nothing since reader is already locked");
return Ok(inner);
}
BlockingMode::Blocking => {
crate::trace!("read_packet_and_enqueue in Blocking mode waiting for pre-existing reader");
}
}
// 1.1. Someone else is reading (other thread is at 2.2);
// wait for it. `Condvar::wait` will unlock `inner`, so
// the other thread can relock `inner` at 2.1.3 (and to allow
// other threads to arrive 0.1).
//
// When `wait` finishes, other thread has enqueued a packet,
// so the purpose of this function has been fulfilled. `wait`
// will relock `inner` when it returns.
Ok(self.reader_condition.wait(inner).unwrap())
}
Err(TryLockError::Poisoned(e)) => panic!("{}", e),
Ok(mut packet_reader) => {
// Make sure sleeping readers are woken up when we return
// (Even in case of errors)
let notify_on_drop = NotifyOnDrop(&self.reader_condition);
// 2.1. Poll for read if mode is blocking.
if mode == BlockingMode::Blocking {
// 2.1.1. Unlock `inner`, so other threads can use it while
// during the poll.
drop(inner);
// 2.1.2. Do the actual poll
self.stream.poll(PollMode::Readable)?;
// 2.1.3. Relock inner
inner = self.inner.lock().unwrap();
}
// 2.2. Try to read as many packets as possible without blocking.
let mut fds = Vec::new();
let mut packets = Vec::new();
packet_reader.try_read_packets(&self.stream, &mut packets, &mut fds)?;
// 2.3. Once `inner` has been relocked, drop the
// lock on `packet_reader`. While inner is locked, other
// threads cannot arrive at 0.1 anyways.
//
// `packet_reader` must be unlocked with `inner` is locked,
// otherwise it could let another thread wait on 2.1
// for a reply that has been read but not enqueued yet.
drop(packet_reader);
// 2.4. Actually enqueue the read packets.
inner.inner.enqueue_fds(fds);
packets
.into_iter()
.for_each(|packet| inner.inner.enqueue_packet(packet));
// 2.5. Notify the condvar by dropping the `notify_on_drop` object.
// The object would have been dropped when the function returns, so
// the explicit drop is not really needed. The purpose of having a
// explicit drop is to... make it explicit.
drop(notify_on_drop);
// 2.6. Return the locked `inner` back to the caller.
Ok(inner)
}
}
}
fn prefetch_maximum_request_bytes_impl(&self, max_bytes: &mut MutexGuard<'_, MaxRequestBytes>) {
if let MaxRequestBytes::Unknown = **max_bytes {
crate::info!("Prefetching maximum request length");
let request = self
.bigreq_enable()
.map(|cookie| cookie.into_sequence_number())
.ok();
**max_bytes = MaxRequestBytes::Requested(request);
}
}
/// Returns a reference to the contained stream.
pub fn stream(&self) -> &S {
&self.stream
}
}
impl<S: Stream> RequestConnection for RustConnection<S> {
type Buf = Vec<u8>;
fn send_request_with_reply<Reply>(
&self,
bufs: &[IoSlice<'_>],
fds: Vec<RawFdContainer>,
) -> Result<Cookie<'_, Self, Reply>, ConnectionError>
where
Reply: TryParse,
{
Ok(Cookie::new(
self,
self.send_request(bufs, fds, ReplyFdKind::ReplyWithoutFDs)?,
))
}
fn send_request_with_reply_with_fds<Reply>(
&self,
bufs: &[IoSlice<'_>],
fds: Vec<RawFdContainer>,
) -> Result<CookieWithFds<'_, Self, Reply>, ConnectionError>
where
Reply: TryParseFd,
{
Ok(CookieWithFds::new(
self,
self.send_request(bufs, fds, ReplyFdKind::ReplyWithFDs)?,
))
}
fn send_request_without_reply(
&self,
bufs: &[IoSlice<'_>],
fds: Vec<RawFdContainer>,
) -> Result<VoidCookie<'_, Self>, ConnectionError> {
Ok(VoidCookie::new(
self,
self.send_request(bufs, fds, ReplyFdKind::NoReply)?,
))
}
fn discard_reply(&self, sequence: SequenceNumber, _kind: RequestKind, mode: DiscardMode) {
crate::debug!(
"Discarding reply to request {} in mode {:?}",
sequence,
mode
);
self.inner
.lock()
.unwrap()
.inner
.discard_reply(sequence, mode);
}
fn prefetch_extension_information(
&self,
extension_name: &'static str,
) -> Result<(), ConnectionError> {
self.extension_manager
.lock()
.unwrap()
.prefetch_extension_information(self, extension_name)
}
fn extension_information(
&self,
extension_name: &'static str,
) -> Result<Option<ExtensionInformation>, ConnectionError> {
self.extension_manager
.lock()
.unwrap()
.extension_information(self, extension_name)
}
fn wait_for_reply_or_raw_error(
&self,
sequence: SequenceNumber,
) -> Result<ReplyOrError<Vec<u8>>, ConnectionError> {
match self.wait_for_reply_with_fds_raw(sequence)? {
ReplyOrError::Reply((reply, _fds)) => Ok(ReplyOrError::Reply(reply)),
ReplyOrError::Error(e) => Ok(ReplyOrError::Error(e)),
}
}
fn wait_for_reply(&self, sequence: SequenceNumber) -> Result<Option<Vec<u8>>, ConnectionError> {
let _guard = crate::debug_span!("wait_for_reply", sequence).entered();
let mut inner = self.inner.lock().unwrap();
inner = self.flush_impl(inner)?;
loop {
crate::trace!({ sequence }, "Polling for reply");
let poll_result = inner.inner.poll_for_reply(sequence);
match poll_result {
PollReply::TryAgain => {}
PollReply::NoReply => return Ok(None),
PollReply::Reply(buffer) => return Ok(Some(buffer)),
}
inner = self.read_packet_and_enqueue(inner, BlockingMode::Blocking)?;
}
}
fn check_for_raw_error(
&self,
sequence: SequenceNumber,
) -> Result<Option<Buffer>, ConnectionError> {
let _guard = crate::debug_span!("check_for_raw_error", sequence).entered();
let mut inner = self.inner.lock().unwrap();
if inner.inner.prepare_check_for_reply_or_error(sequence) {
crate::trace!("Inserting sync with the X11 server");
inner = self.send_sync(inner)?;
assert!(!inner.inner.prepare_check_for_reply_or_error(sequence));
}
// Ensure the request is sent
inner = self.flush_impl(inner)?;
loop {
crate::trace!({ sequence }, "Polling for reply or error");
let poll_result = inner.inner.poll_check_for_reply_or_error(sequence);
match poll_result {
PollReply::TryAgain => {}
PollReply::NoReply => return Ok(None),
PollReply::Reply(buffer) => return Ok(Some(buffer)),
}
inner = self.read_packet_and_enqueue(inner, BlockingMode::Blocking)?;
}
}
fn wait_for_reply_with_fds_raw(
&self,
sequence: SequenceNumber,
) -> Result<ReplyOrError<BufWithFds, Buffer>, ConnectionError> {
let _guard = crate::debug_span!("wait_for_reply_with_fds_raw", sequence).entered();
let mut inner = self.inner.lock().unwrap();
// Ensure the request is sent
inner = self.flush_impl(inner)?;
loop {
crate::trace!({ sequence }, "Polling for reply or error");
if let Some(reply) = inner.inner.poll_for_reply_or_error(sequence) {
if reply.0[0] == 0 {
crate::trace!("Got error");
return Ok(ReplyOrError::Error(reply.0));
} else {
crate::trace!("Got reply");
return Ok(ReplyOrError::Reply(reply));
}
}
inner = self.read_packet_and_enqueue(inner, BlockingMode::Blocking)?;
}
}
fn maximum_request_bytes(&self) -> usize {
let mut max_bytes = self.maximum_request_bytes.lock().unwrap();
self.prefetch_maximum_request_bytes_impl(&mut max_bytes);
use MaxRequestBytes::*;
let max_bytes = &mut *max_bytes;
match max_bytes {
Unknown => unreachable!("We just prefetched this"),
Requested(seqno) => {
let _guard = crate::info_span!("maximum_request_bytes").entered();
let length = seqno
// If prefetching the request succeeded, get a cookie
.and_then(|seqno| {
Cookie::<_, EnableReply>::new(self, seqno)
// and then get the reply to the request
.reply()
.map(|reply| reply.maximum_request_length)
.ok()
})
// If anything failed (sending the request, getting the reply), use Setup
.unwrap_or_else(|| self.setup.maximum_request_length.into())
// Turn the u32 into usize, using the max value in case of overflow
.try_into()
.unwrap_or(usize::max_value());
let length = length * 4;
*max_bytes = Known(length);
crate::info!("Maximum request length is {} bytes", length);
length
}
Known(length) => *length,
}
}
fn prefetch_maximum_request_bytes(&self) {
let mut max_bytes = self.maximum_request_bytes.lock().unwrap();
self.prefetch_maximum_request_bytes_impl(&mut max_bytes);
}
fn parse_error(&self, error: &[u8]) -> Result<crate::x11_utils::X11Error, ParseError> {
let ext_mgr = self.extension_manager.lock().unwrap();
crate::x11_utils::X11Error::try_parse(error, &*ext_mgr)
}
fn parse_event(&self, event: &[u8]) -> Result<crate::protocol::Event, ParseError> {
let ext_mgr = self.extension_manager.lock().unwrap();
crate::protocol::Event::parse(event, &*ext_mgr)
}
}
impl<S: Stream> Connection for RustConnection<S> {
fn wait_for_raw_event_with_sequence(
&self,
) -> Result<RawEventAndSeqNumber<Vec<u8>>, ConnectionError> {
let _guard = crate::trace_span!("wait_for_raw_event_with_sequence").entered();
let mut inner = self.inner.lock().unwrap();
loop {
if let Some(event) = inner.inner.poll_for_event_with_sequence() {
return Ok(event);
}
inner = self.read_packet_and_enqueue(inner, BlockingMode::Blocking)?;
}
}
fn poll_for_raw_event_with_sequence(
&self,
) -> Result<Option<RawEventAndSeqNumber<Vec<u8>>>, ConnectionError> {
let _guard = crate::trace_span!("poll_for_raw_event_with_sequence").entered();
let mut inner = self.inner.lock().unwrap();
if let Some(event) = inner.inner.poll_for_event_with_sequence() {
Ok(Some(event))
} else {
inner = self.read_packet_and_enqueue(inner, BlockingMode::NonBlocking)?;
Ok(inner.inner.poll_for_event_with_sequence())
}
}
fn flush(&self) -> Result<(), ConnectionError> {
let inner = self.inner.lock().unwrap();
let _inner = self.flush_impl(inner)?;
Ok(())
}
fn setup(&self) -> &Setup {
&self.setup
}
fn generate_id(&self) -> Result<u32, ReplyOrIdError> {
let mut id_allocator = self.id_allocator.lock().unwrap();
if let Some(id) = id_allocator.generate_id() {
Ok(id)
} else {
use crate::protocol::xc_misc::{self, ConnectionExt as _};
if self
.extension_information(xc_misc::X11_EXTENSION_NAME)?
.is_none()
{
crate::error!("XIDs are exhausted and XC-MISC extension is not available");
Err(ReplyOrIdError::IdsExhausted)
} else {
crate::info!("XIDs are exhausted; fetching free range via XC-MISC");
id_allocator.update_xid_range(&self.xc_misc_get_xid_range()?.reply()?)?;
id_allocator
.generate_id()
.ok_or(ReplyOrIdError::IdsExhausted)
}
}
}
}
/// Call `notify_all` on a condition variable when dropped.
#[derive(Debug)]
struct NotifyOnDrop<'a>(&'a Condvar);
impl Drop for NotifyOnDrop<'_> {
fn drop(&mut self) {
self.0.notify_all();
}
}
/// Format information about a request in a Display impl
struct RequestInfo<'a> {
extension_manager: &'a Mutex<ExtensionManager>,
major_opcode: u8,
minor_opcode: u8,
}
impl std::fmt::Display for RequestInfo<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// QueryExtension is used by the extension manager. We would deadlock if we
// tried to lock it again. Hence, this case is hardcoded here.
if self.major_opcode == QUERY_EXTENSION_REQUEST {
write!(f, "QueryExtension request")
} else {
let guard = self.extension_manager.lock().unwrap();
write!(
f,
"{} request",
x11rb_protocol::protocol::get_request_name(
&*guard,
self.major_opcode,
self.minor_opcode
)
)
}
}
}