x11rb/rust_connection/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
//! A pure-rust implementation of a connection to an X11 server.

use std::io::IoSlice;
use std::sync::{Condvar, Mutex, MutexGuard, TryLockError};
use std::time::Instant;

use crate::connection::{
    compute_length_field, Connection, ReplyOrError, RequestConnection, RequestKind,
};
use crate::cookie::{Cookie, CookieWithFds, VoidCookie};
use crate::errors::DisplayParsingError;
pub use crate::errors::{ConnectError, ConnectionError, ParseError, ReplyError, ReplyOrIdError};
use crate::extension_manager::ExtensionManager;
use crate::protocol::bigreq::{ConnectionExt as _, EnableReply};
use crate::protocol::xproto::{Setup, GET_INPUT_FOCUS_REQUEST, QUERY_EXTENSION_REQUEST};
use crate::utils::RawFdContainer;
use crate::x11_utils::{ExtensionInformation, TryParse, TryParseFd};
use x11rb_protocol::connect::Connect;
use x11rb_protocol::connection::{Connection as ProtoConnection, PollReply, ReplyFdKind};
use x11rb_protocol::id_allocator::IdAllocator;
use x11rb_protocol::{xauth::get_auth, DiscardMode, RawEventAndSeqNumber, SequenceNumber};

mod packet_reader;
mod stream;
mod write_buffer;

use packet_reader::PacketReader;
pub use stream::{DefaultStream, PollMode, Stream};
use write_buffer::WriteBuffer;

type Buffer = <RustConnection as RequestConnection>::Buf;
/// A combination of a buffer and a list of file descriptors for use by [`RustConnection`].
pub type BufWithFds = crate::connection::BufWithFds<Buffer>;

#[derive(Debug)]
enum MaxRequestBytes {
    Unknown,
    Requested(Option<SequenceNumber>),
    Known(usize),
}

#[derive(Debug)]
struct ConnectionInner {
    inner: ProtoConnection,
    write_buffer: WriteBuffer,
}

type MutexGuardInner<'a> = MutexGuard<'a, ConnectionInner>;

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum BlockingMode {
    Blocking,
    NonBlocking,
}

/// A connection to an X11 server implemented in pure rust
///
/// This type is generic over `S`, which allows to use a generic stream to communicate with the
/// server. This stream can written to and read from, but it can also be polled, meaning that one
/// checks if new data can be read or written.
///
/// `RustConnection` always used an internal buffer for reading, so `R` does not need
/// to be buffered.
#[derive(Debug)]
pub struct RustConnection<S: Stream = DefaultStream> {
    inner: Mutex<ConnectionInner>,
    stream: S,
    // This mutex is only locked with `try_lock` (never blocks), so a simpler
    // lock based only on a atomic variable would be more efficient.
    packet_reader: Mutex<PacketReader>,
    reader_condition: Condvar,
    setup: Setup,
    extension_manager: Mutex<ExtensionManager>,
    maximum_request_bytes: Mutex<MaxRequestBytes>,
    id_allocator: Mutex<IdAllocator>,
}

// Locking rules
// =============
//
// To avoid deadlocks, it is important to have a defined ordering about mutexes:
//
// Mutexes that may be locked when no other mutex is held:
// - maximum_request_bytes
// - extension_manager
// - id_allocator
//
// Then comes `inner`. This mutex protects the information about in-flight requests and packets
// that were already read from the connection but not given out to callers. This mutex also
// contains the write buffer and has to be locked in order to write something to the X11 server.
// In this case, the mutex has to be kept locked until writing the request has finished. This is
// necessary to ensure correct sync insertion without threads interfering with each other. When
// this mutex is locked for operations other than writing, the lock should be kept only for a
// short time.
//
// The inner level is `packet_reader`. This mutex is only locked when `inner` is already held and
// only with `try_lock()`. This ensures that there is only one reader. While actually reading, the
// lock on `inner` is released so that other threads can make progress. If more threads want to
// read while `read` is already locked, they sleep on `reader_condition`. The actual reader will
// then notify this condition variable once it is done reading.
//
// n.b. notgull: write_buffer follows the same rules
//
// The condition variable is necessary since one thread may read packets that another thread waits
// for. Thus, after reading something from the connection, all threads that wait for something have
// to check if they are the intended recipient.

impl RustConnection<DefaultStream> {
    /// Establish a new connection.
    ///
    /// If no `dpy_name` is provided, the value from `$DISPLAY` is used.
    pub fn connect(dpy_name: Option<&str>) -> Result<(Self, usize), ConnectError> {
        // Parse display information
        let parsed_display = x11rb_protocol::parse_display::parse_display(dpy_name)?;
        let screen = parsed_display.screen.into();

        // Establish connection by iterating over ConnectAddresses until we find one that
        // works.
        let mut error = None;
        for addr in parsed_display.connect_instruction() {
            let start = Instant::now();
            match DefaultStream::connect(&addr) {
                Ok((stream, (family, address))) => {
                    crate::trace!(
                        "Connected to X11 server via {:?} in {:?}",
                        addr,
                        start.elapsed()
                    );

                    // we found a stream, get auth information
                    let (auth_name, auth_data) = get_auth(family, &address, parsed_display.display)
                        // Ignore all errors while determining auth; instead we just try without auth info.
                        .unwrap_or(None)
                        .unwrap_or_else(|| (Vec::new(), Vec::new()));
                    crate::trace!("Picked authentication via auth mechanism {:?}", auth_name);

                    // finish connecting to server
                    return Ok((
                        Self::connect_to_stream_with_auth_info(
                            stream, screen, auth_name, auth_data,
                        )?,
                        screen,
                    ));
                }
                Err(e) => {
                    crate::debug!("Failed to connect to X11 server via {:?}: {:?}", addr, e);
                    error = Some(e);
                    continue;
                }
            }
        }

        // none of the addresses worked
        Err(match error {
            Some(e) => ConnectError::IoError(e),
            None => DisplayParsingError::Unknown.into(),
        })
    }
}

impl<S: Stream> RustConnection<S> {
    /// Establish a new connection to the given streams.
    ///
    /// `read` is used for reading data from the X11 server and `write` is used for writing.
    /// `screen` is the number of the screen that should be used. This function checks that a
    /// screen with that number exists.
    pub fn connect_to_stream(stream: S, screen: usize) -> Result<Self, ConnectError> {
        Self::connect_to_stream_with_auth_info(stream, screen, Vec::new(), Vec::new())
    }

    /// Establish a new connection to the given streams.
    ///
    /// `read` is used for reading data from the X11 server and `write` is used for writing.
    /// `screen` is the number of the screen that should be used. This function checks that a
    /// screen with that number exists.
    ///
    /// The parameters `auth_name` and `auth_data` are used for the members
    /// `authorization_protocol_name` and `authorization_protocol_data` of the `SetupRequest` that
    /// is sent to the X11 server.
    pub fn connect_to_stream_with_auth_info(
        stream: S,
        screen: usize,
        auth_name: Vec<u8>,
        auth_data: Vec<u8>,
    ) -> Result<Self, ConnectError> {
        let (mut connect, setup_request) = Connect::with_authorization(auth_name, auth_data);

        // write the connect() setup request
        let mut nwritten = 0;
        let mut fds = vec![];

        crate::trace!(
            "Writing connection setup with {} bytes",
            setup_request.len()
        );
        while nwritten != setup_request.len() {
            stream.poll(PollMode::Writable)?;
            // poll returned successfully, so the stream is writable.
            match stream.write(&setup_request[nwritten..], &mut fds) {
                Ok(0) => {
                    return Err(std::io::Error::new(
                        std::io::ErrorKind::WriteZero,
                        "failed to write whole buffer",
                    )
                    .into())
                }
                Ok(n) => nwritten += n,
                // Spurious wakeup from poll, try again
                Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {}
                Err(e) => return Err(e.into()),
            }
        }

        // read in the setup
        loop {
            stream.poll(PollMode::Readable)?;
            crate::trace!(
                "Reading connection setup with at least {} bytes remaining",
                connect.buffer().len()
            );
            let adv = match stream.read(connect.buffer(), &mut fds) {
                Ok(0) => {
                    return Err(std::io::Error::new(
                        std::io::ErrorKind::UnexpectedEof,
                        "failed to read whole buffer",
                    )
                    .into())
                }
                Ok(n) => n,
                // Spurious wakeup from poll, try again
                Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => continue,
                Err(e) => return Err(e.into()),
            };
            crate::trace!("Read {} bytes", adv);

            // advance the internal buffer
            if connect.advance(adv) {
                break;
            }
        }

        // resolve the setup
        let setup = connect.into_setup()?;

        // Check that we got a valid screen number
        if screen >= setup.roots.len() {
            return Err(ConnectError::InvalidScreen);
        }

        // Success! Set up our state
        Self::for_connected_stream(stream, setup)
    }

    /// Establish a new connection for an already connected stream.
    ///
    /// The given `stream` is used for communicating with the X11 server.
    /// It is assumed that `setup` was just received from the server. Thus, the first reply to a
    /// request that is sent will have sequence number one.
    pub fn for_connected_stream(stream: S, setup: Setup) -> Result<Self, ConnectError> {
        let id_allocator = IdAllocator::new(setup.resource_id_base, setup.resource_id_mask)?;

        Ok(RustConnection {
            inner: Mutex::new(ConnectionInner {
                inner: ProtoConnection::new(),
                write_buffer: WriteBuffer::new(),
            }),
            stream,
            packet_reader: Mutex::new(PacketReader::new()),
            reader_condition: Condvar::new(),
            setup,
            extension_manager: Default::default(),
            maximum_request_bytes: Mutex::new(MaxRequestBytes::Unknown),
            id_allocator: Mutex::new(id_allocator),
        })
    }

    /// Internal function for actually sending a request.
    ///
    /// This function "does the actual work" for `send_request_with_reply()` and
    /// `send_request_without_reply()`.
    fn send_request(
        &self,
        bufs: &[IoSlice<'_>],
        fds: Vec<RawFdContainer>,
        kind: ReplyFdKind,
    ) -> Result<SequenceNumber, ConnectionError> {
        let _guard = crate::debug_span!("send_request").entered();

        let request_info = RequestInfo {
            extension_manager: &self.extension_manager,
            major_opcode: bufs[0][0],
            minor_opcode: bufs[0][1],
        };
        crate::debug!("Sending {}", request_info);

        let mut storage = Default::default();
        let bufs = compute_length_field(self, bufs, &mut storage)?;

        // Note: `inner` must be kept blocked until the request has been completely written
        // or buffered to avoid sending the data of different requests interleaved. For this
        // reason, `read_packet_and_enqueue` must always be called with `BlockingMode::NonBlocking`
        // during a write, otherwise `inner` would be temporarily released.
        let mut inner = self.inner.lock().unwrap();

        loop {
            let send_result = inner.inner.send_request(kind);
            match send_result {
                Some(seqno) => {
                    // Now actually send the buffers
                    let _inner = self.write_all_vectored(inner, bufs, fds)?;
                    return Ok(seqno);
                }
                None => {
                    crate::trace!("Syncing with the X11 server since there are too many outstanding void requests");
                    inner = self.send_sync(inner)?;
                }
            }
        }
    }

    /// Send a synchronisation packet to the X11 server.
    ///
    /// This function sends a `GetInputFocus` request to the X11 server and arranges for its reply
    /// to be ignored. This ensures that a reply is expected (`ConnectionInner.next_reply_expected`
    /// increases).
    fn send_sync<'a>(
        &'a self,
        mut inner: MutexGuardInner<'a>,
    ) -> Result<MutexGuardInner<'a>, std::io::Error> {
        let length = 1u16.to_ne_bytes();
        let request = [
            GET_INPUT_FOCUS_REQUEST,
            0, /* pad */
            length[0],
            length[1],
        ];

        let seqno = inner
            .inner
            .send_request(ReplyFdKind::ReplyWithoutFDs)
            .expect("Sending a HasResponse request should not be blocked by syncs");
        inner
            .inner
            .discard_reply(seqno, DiscardMode::DiscardReplyAndError);
        let inner = self.write_all_vectored(inner, &[IoSlice::new(&request)], Vec::new())?;

        Ok(inner)
    }

    /// Write a set of buffers on a `writer`. May also read packets
    /// from the server.
    fn write_all_vectored<'a>(
        &'a self,
        mut inner: MutexGuardInner<'a>,
        mut bufs: &[IoSlice<'_>],
        mut fds: Vec<RawFdContainer>,
    ) -> std::io::Result<MutexGuardInner<'a>> {
        let mut partial_buf: &[u8] = &[];
        while !partial_buf.is_empty() || !bufs.is_empty() {
            self.stream.poll(PollMode::ReadAndWritable)?;
            let write_result = if !partial_buf.is_empty() {
                // "inner" is held, passed into this function, so this should never be held
                inner
                    .write_buffer
                    .write(&self.stream, partial_buf, &mut fds)
            } else {
                // same as above
                inner
                    .write_buffer
                    .write_vectored(&self.stream, bufs, &mut fds)
            };
            match write_result {
                Ok(0) => {
                    return Err(std::io::Error::new(
                        std::io::ErrorKind::WriteZero,
                        "failed to write anything",
                    ));
                }
                Ok(mut count) => {
                    // Successful write
                    if count >= partial_buf.len() {
                        count -= partial_buf.len();
                        partial_buf = &[];
                    } else {
                        partial_buf = &partial_buf[count..];
                        count = 0;
                    }
                    while count > 0 {
                        if count >= bufs[0].len() {
                            count -= bufs[0].len();
                        } else {
                            partial_buf = &bufs[0][count..];
                            count = 0;
                        }
                        bufs = &bufs[1..];
                        // Skip empty slices
                        while bufs.first().map(|s| s.len()) == Some(0) {
                            bufs = &bufs[1..];
                        }
                    }
                }
                Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {
                    crate::trace!("Writing more data would block for now");
                    // Writing would block, try to read instead because the
                    // server might not accept new requests after its
                    // buffered replies have been read.
                    inner = self.read_packet_and_enqueue(inner, BlockingMode::NonBlocking)?;
                }
                Err(e) => return Err(e),
            }
        }
        if !fds.is_empty() {
            return Err(std::io::Error::new(
                std::io::ErrorKind::Other,
                "Left over FDs after sending the request",
            ));
        }
        Ok(inner)
    }

    fn flush_impl<'a>(
        &'a self,
        mut inner: MutexGuardInner<'a>,
    ) -> std::io::Result<MutexGuardInner<'a>> {
        // n.b. notgull: inner guard is held
        while inner.write_buffer.needs_flush() {
            self.stream.poll(PollMode::ReadAndWritable)?;
            let flush_result = inner.write_buffer.flush(&self.stream);
            match flush_result {
                // Flush completed
                Ok(()) => break,
                Err(ref e) if e.kind() == std::io::ErrorKind::WouldBlock => {
                    crate::trace!("Flushing more data would block for now");
                    // Writing would block, try to read instead because the
                    // server might not accept new requests after its
                    // buffered replies have been read.
                    inner = self.read_packet_and_enqueue(inner, BlockingMode::NonBlocking)?;
                }
                Err(e) => return Err(e),
            }
        }
        Ok(inner)
    }

    /// Read a packet from the connection.
    ///
    /// This function waits for an X11 packet to be received. It drops the mutex protecting the
    /// inner data while waiting for a packet so that other threads can make progress. For this
    /// reason, you need to pass in a `MutexGuard` to be dropped. This function locks the mutex
    /// again and returns a new `MutexGuard`.
    ///
    /// Note: If `mode` is `BlockingMode::Blocking`, the lock on `inner` will be temporarily
    /// released. While sending a request, `inner` must be kept locked to avoid sending the data
    /// of different requests interleaved. So, when `read_packet_and_enqueue` is called as part
    /// of a write, it must always be done with `mode` set to `BlockingMode::NonBlocking`.
    fn read_packet_and_enqueue<'a>(
        &'a self,
        mut inner: MutexGuardInner<'a>,
        mode: BlockingMode,
    ) -> Result<MutexGuardInner<'a>, std::io::Error> {
        // 0.1. Try to lock the `packet_reader` mutex.
        match self.packet_reader.try_lock() {
            Err(TryLockError::WouldBlock) => {
                // In non-blocking mode, we just return immediately
                match mode {
                    BlockingMode::NonBlocking => {
                        crate::trace!("read_packet_and_enqueue in NonBlocking mode doing nothing since reader is already locked");
                        return Ok(inner);
                    }
                    BlockingMode::Blocking => {
                        crate::trace!("read_packet_and_enqueue in Blocking mode waiting for pre-existing reader");
                    }
                }

                // 1.1. Someone else is reading (other thread is at 2.2);
                // wait for it. `Condvar::wait` will unlock `inner`, so
                // the other thread can relock `inner` at 2.1.3 (and to allow
                // other threads to arrive 0.1).
                //
                // When `wait` finishes, other thread has enqueued a packet,
                // so the purpose of this function has been fulfilled. `wait`
                // will relock `inner` when it returns.
                Ok(self.reader_condition.wait(inner).unwrap())
            }
            Err(TryLockError::Poisoned(e)) => panic!("{}", e),
            Ok(mut packet_reader) => {
                // Make sure sleeping readers are woken up when we return
                // (Even in case of errors)
                let notify_on_drop = NotifyOnDrop(&self.reader_condition);

                // 2.1. Poll for read if mode is blocking.
                if mode == BlockingMode::Blocking {
                    // 2.1.1. Unlock `inner`, so other threads can use it while
                    // during the poll.
                    drop(inner);
                    // 2.1.2. Do the actual poll
                    self.stream.poll(PollMode::Readable)?;
                    // 2.1.3. Relock inner
                    inner = self.inner.lock().unwrap();
                }

                // 2.2. Try to read as many packets as possible without blocking.
                let mut fds = Vec::new();
                let mut packets = Vec::new();
                packet_reader.try_read_packets(&self.stream, &mut packets, &mut fds)?;

                // 2.3. Once `inner` has been relocked, drop the
                // lock on `packet_reader`. While inner is locked, other
                // threads cannot arrive at 0.1 anyways.
                //
                // `packet_reader` must be unlocked with `inner` is locked,
                // otherwise it could let another thread wait on 2.1
                // for a reply that has been read but not enqueued yet.
                drop(packet_reader);

                // 2.4. Actually enqueue the read packets.
                inner.inner.enqueue_fds(fds);
                packets
                    .into_iter()
                    .for_each(|packet| inner.inner.enqueue_packet(packet));

                // 2.5. Notify the condvar by dropping the `notify_on_drop` object.
                // The object would have been dropped when the function returns, so
                // the explicit drop is not really needed. The purpose of having a
                // explicit drop is to... make it explicit.
                drop(notify_on_drop);

                // 2.6. Return the locked `inner` back to the caller.
                Ok(inner)
            }
        }
    }

    fn prefetch_maximum_request_bytes_impl(&self, max_bytes: &mut MutexGuard<'_, MaxRequestBytes>) {
        if let MaxRequestBytes::Unknown = **max_bytes {
            crate::info!("Prefetching maximum request length");
            let request = self
                .bigreq_enable()
                .map(|cookie| cookie.into_sequence_number())
                .ok();
            **max_bytes = MaxRequestBytes::Requested(request);
        }
    }

    /// Returns a reference to the contained stream.
    pub fn stream(&self) -> &S {
        &self.stream
    }
}

impl<S: Stream> RequestConnection for RustConnection<S> {
    type Buf = Vec<u8>;

    fn send_request_with_reply<Reply>(
        &self,
        bufs: &[IoSlice<'_>],
        fds: Vec<RawFdContainer>,
    ) -> Result<Cookie<'_, Self, Reply>, ConnectionError>
    where
        Reply: TryParse,
    {
        Ok(Cookie::new(
            self,
            self.send_request(bufs, fds, ReplyFdKind::ReplyWithoutFDs)?,
        ))
    }

    fn send_request_with_reply_with_fds<Reply>(
        &self,
        bufs: &[IoSlice<'_>],
        fds: Vec<RawFdContainer>,
    ) -> Result<CookieWithFds<'_, Self, Reply>, ConnectionError>
    where
        Reply: TryParseFd,
    {
        Ok(CookieWithFds::new(
            self,
            self.send_request(bufs, fds, ReplyFdKind::ReplyWithFDs)?,
        ))
    }

    fn send_request_without_reply(
        &self,
        bufs: &[IoSlice<'_>],
        fds: Vec<RawFdContainer>,
    ) -> Result<VoidCookie<'_, Self>, ConnectionError> {
        Ok(VoidCookie::new(
            self,
            self.send_request(bufs, fds, ReplyFdKind::NoReply)?,
        ))
    }

    fn discard_reply(&self, sequence: SequenceNumber, _kind: RequestKind, mode: DiscardMode) {
        crate::debug!(
            "Discarding reply to request {} in mode {:?}",
            sequence,
            mode
        );
        self.inner
            .lock()
            .unwrap()
            .inner
            .discard_reply(sequence, mode);
    }

    fn prefetch_extension_information(
        &self,
        extension_name: &'static str,
    ) -> Result<(), ConnectionError> {
        self.extension_manager
            .lock()
            .unwrap()
            .prefetch_extension_information(self, extension_name)
    }

    fn extension_information(
        &self,
        extension_name: &'static str,
    ) -> Result<Option<ExtensionInformation>, ConnectionError> {
        self.extension_manager
            .lock()
            .unwrap()
            .extension_information(self, extension_name)
    }

    fn wait_for_reply_or_raw_error(
        &self,
        sequence: SequenceNumber,
    ) -> Result<ReplyOrError<Vec<u8>>, ConnectionError> {
        match self.wait_for_reply_with_fds_raw(sequence)? {
            ReplyOrError::Reply((reply, _fds)) => Ok(ReplyOrError::Reply(reply)),
            ReplyOrError::Error(e) => Ok(ReplyOrError::Error(e)),
        }
    }

    fn wait_for_reply(&self, sequence: SequenceNumber) -> Result<Option<Vec<u8>>, ConnectionError> {
        let _guard = crate::debug_span!("wait_for_reply", sequence).entered();

        let mut inner = self.inner.lock().unwrap();
        inner = self.flush_impl(inner)?;
        loop {
            crate::trace!({ sequence }, "Polling for reply");
            let poll_result = inner.inner.poll_for_reply(sequence);
            match poll_result {
                PollReply::TryAgain => {}
                PollReply::NoReply => return Ok(None),
                PollReply::Reply(buffer) => return Ok(Some(buffer)),
            }
            inner = self.read_packet_and_enqueue(inner, BlockingMode::Blocking)?;
        }
    }

    fn check_for_raw_error(
        &self,
        sequence: SequenceNumber,
    ) -> Result<Option<Buffer>, ConnectionError> {
        let _guard = crate::debug_span!("check_for_raw_error", sequence).entered();

        let mut inner = self.inner.lock().unwrap();
        if inner.inner.prepare_check_for_reply_or_error(sequence) {
            crate::trace!("Inserting sync with the X11 server");
            inner = self.send_sync(inner)?;
            assert!(!inner.inner.prepare_check_for_reply_or_error(sequence));
        }
        // Ensure the request is sent
        inner = self.flush_impl(inner)?;
        loop {
            crate::trace!({ sequence }, "Polling for reply or error");
            let poll_result = inner.inner.poll_check_for_reply_or_error(sequence);
            match poll_result {
                PollReply::TryAgain => {}
                PollReply::NoReply => return Ok(None),
                PollReply::Reply(buffer) => return Ok(Some(buffer)),
            }
            inner = self.read_packet_and_enqueue(inner, BlockingMode::Blocking)?;
        }
    }

    fn wait_for_reply_with_fds_raw(
        &self,
        sequence: SequenceNumber,
    ) -> Result<ReplyOrError<BufWithFds, Buffer>, ConnectionError> {
        let _guard = crate::debug_span!("wait_for_reply_with_fds_raw", sequence).entered();

        let mut inner = self.inner.lock().unwrap();
        // Ensure the request is sent
        inner = self.flush_impl(inner)?;
        loop {
            crate::trace!({ sequence }, "Polling for reply or error");
            if let Some(reply) = inner.inner.poll_for_reply_or_error(sequence) {
                if reply.0[0] == 0 {
                    crate::trace!("Got error");
                    return Ok(ReplyOrError::Error(reply.0));
                } else {
                    crate::trace!("Got reply");
                    return Ok(ReplyOrError::Reply(reply));
                }
            }
            inner = self.read_packet_and_enqueue(inner, BlockingMode::Blocking)?;
        }
    }

    fn maximum_request_bytes(&self) -> usize {
        let mut max_bytes = self.maximum_request_bytes.lock().unwrap();
        self.prefetch_maximum_request_bytes_impl(&mut max_bytes);
        use MaxRequestBytes::*;
        let max_bytes = &mut *max_bytes;
        match max_bytes {
            Unknown => unreachable!("We just prefetched this"),
            Requested(seqno) => {
                let _guard = crate::info_span!("maximum_request_bytes").entered();

                let length = seqno
                    // If prefetching the request succeeded, get a cookie
                    .and_then(|seqno| {
                        Cookie::<_, EnableReply>::new(self, seqno)
                            // and then get the reply to the request
                            .reply()
                            .map(|reply| reply.maximum_request_length)
                            .ok()
                    })
                    // If anything failed (sending the request, getting the reply), use Setup
                    .unwrap_or_else(|| self.setup.maximum_request_length.into())
                    // Turn the u32 into usize, using the max value in case of overflow
                    .try_into()
                    .unwrap_or(usize::max_value());
                let length = length * 4;
                *max_bytes = Known(length);
                crate::info!("Maximum request length is {} bytes", length);
                length
            }
            Known(length) => *length,
        }
    }

    fn prefetch_maximum_request_bytes(&self) {
        let mut max_bytes = self.maximum_request_bytes.lock().unwrap();
        self.prefetch_maximum_request_bytes_impl(&mut max_bytes);
    }

    fn parse_error(&self, error: &[u8]) -> Result<crate::x11_utils::X11Error, ParseError> {
        let ext_mgr = self.extension_manager.lock().unwrap();
        crate::x11_utils::X11Error::try_parse(error, &*ext_mgr)
    }

    fn parse_event(&self, event: &[u8]) -> Result<crate::protocol::Event, ParseError> {
        let ext_mgr = self.extension_manager.lock().unwrap();
        crate::protocol::Event::parse(event, &*ext_mgr)
    }
}

impl<S: Stream> Connection for RustConnection<S> {
    fn wait_for_raw_event_with_sequence(
        &self,
    ) -> Result<RawEventAndSeqNumber<Vec<u8>>, ConnectionError> {
        let _guard = crate::trace_span!("wait_for_raw_event_with_sequence").entered();

        let mut inner = self.inner.lock().unwrap();
        loop {
            if let Some(event) = inner.inner.poll_for_event_with_sequence() {
                return Ok(event);
            }
            inner = self.read_packet_and_enqueue(inner, BlockingMode::Blocking)?;
        }
    }

    fn poll_for_raw_event_with_sequence(
        &self,
    ) -> Result<Option<RawEventAndSeqNumber<Vec<u8>>>, ConnectionError> {
        let _guard = crate::trace_span!("poll_for_raw_event_with_sequence").entered();

        let mut inner = self.inner.lock().unwrap();
        if let Some(event) = inner.inner.poll_for_event_with_sequence() {
            Ok(Some(event))
        } else {
            inner = self.read_packet_and_enqueue(inner, BlockingMode::NonBlocking)?;
            Ok(inner.inner.poll_for_event_with_sequence())
        }
    }

    fn flush(&self) -> Result<(), ConnectionError> {
        let inner = self.inner.lock().unwrap();
        let _inner = self.flush_impl(inner)?;
        Ok(())
    }

    fn setup(&self) -> &Setup {
        &self.setup
    }

    fn generate_id(&self) -> Result<u32, ReplyOrIdError> {
        let mut id_allocator = self.id_allocator.lock().unwrap();
        if let Some(id) = id_allocator.generate_id() {
            Ok(id)
        } else {
            use crate::protocol::xc_misc::{self, ConnectionExt as _};

            if self
                .extension_information(xc_misc::X11_EXTENSION_NAME)?
                .is_none()
            {
                crate::error!("XIDs are exhausted and XC-MISC extension is not available");
                Err(ReplyOrIdError::IdsExhausted)
            } else {
                crate::info!("XIDs are exhausted; fetching free range via XC-MISC");
                id_allocator.update_xid_range(&self.xc_misc_get_xid_range()?.reply()?)?;
                id_allocator
                    .generate_id()
                    .ok_or(ReplyOrIdError::IdsExhausted)
            }
        }
    }
}

/// Call `notify_all` on a condition variable when dropped.
#[derive(Debug)]
struct NotifyOnDrop<'a>(&'a Condvar);

impl Drop for NotifyOnDrop<'_> {
    fn drop(&mut self) {
        self.0.notify_all();
    }
}

/// Format information about a request in a Display impl
struct RequestInfo<'a> {
    extension_manager: &'a Mutex<ExtensionManager>,
    major_opcode: u8,
    minor_opcode: u8,
}

impl std::fmt::Display for RequestInfo<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // QueryExtension is used by the extension manager. We would deadlock if we
        // tried to lock it again. Hence, this case is hardcoded here.
        if self.major_opcode == QUERY_EXTENSION_REQUEST {
            write!(f, "QueryExtension request")
        } else {
            let guard = self.extension_manager.lock().unwrap();
            write!(
                f,
                "{} request",
                x11rb_protocol::protocol::get_request_name(
                    &*guard,
                    self.major_opcode,
                    self.minor_opcode
                )
            )
        }
    }
}